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A method for solving the quasineutral hybrid plasma equations in two dimensions is 
presented, using full ion dynamics and inertialess electrons. The method uses a predictor- 
corrector field solver and is extended to allow plasma-vacuum interfaces of arbitrary shape. A 
three-region method for treating the plasma-vacuum interfaces makes possible the simulation 
of slowly evolving phenomena over time scales much longer than the ion cyclotron period. 
The algorithm is applied to the study of rotational instabilities in theta pinch Vlasov 
equilibria. 

I. INTRODUCTION 

Many macroscopic problems in plasma physics are characterized by ion Larmor 
radii comparable to the scale lengths of the system. For these problems, and for 
problems involving microinstabilities, a fluid description of the ions is inadequate, 
and the ions must instead be treated in a fully kinetic manner. Also, as plasma 
behavior dominated by ion physics generally evolves on time scales much longer than 
characteristic electron time scales, for many problems it is unnecessary to follow the 
full dynamics of the electron motion. In addition, when the frequencies of interest are 
low compared to the ion cyclotron frequency, o < oCi, the effects of high frequency 
phenomena, such as electromagnetic radiation and waves associated with electron 
inertia, are generally negligible. These considerations have led to the development of 
quasineutral hybrid plasma simulation codes. Such one-dimensional hybrid 
simulations have been performed by Sgro and Nielson [ 1 ] for theta pinch implosions 
and by Byers et al. [2] for the study of microinstabilities. Two-dimensional (r - z) 
simulations of theta pinch implosions have been performed by Hewett [3]. 

Our hybrid algorithm treats ions as particles and electrons as an inertialess fluid. 
The Darwin limit of Maxwell’s equations (i.e., neglecting the transverse displacement 
current) is used. The electron momentum equation, with inertial terms neglected, is 
coupled with Maxwell’s equations and the statement of quasineutrality in order to 
determine the electric and magnetic fields. In Section II of this paper, we describe 
our two-dimensional quasineutral model which has been applied to ion layer kink 
instabilities. In Section III, we discuss the extension of this algorithm to problems 
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having plasma-vacuum interfaces. In Section IV, we show the application of the 
method to the study of theta pinch rotational instabilities. 

II. MODEL 

In this section we describe the quasineutral model and the basic algorithm used in 
simulation. Ampere’s law may be decomposed into its longitudinal (curl-free) and 
transverse (divergence-free) parts, 

47% VxB=- 
1 aE, 

c +c-w 

47rJ, I)=- 1 8E, 
c +Tat’ (lb) 

where the subscripts 1 and t, respectively, refer to the longitudinal and transverse 
parts of a vector quantity. We assume quasineutrality, setting ni = n,, which implies 
V . J = 0. If J, vanishes at the boundaries, or if the system has periodic boundaries, 
then J, = 0 throughout the system. For the study of low frequency phenomena, the 
Darwin approximation is made, that is, the transverse displacement current is 
neglected. Ampere’s law then reduces to the simple form 

V X B = (4x//c)(J, + Ji), (2) 

where J, and Ji refer to the electron and ion current densities. 
Electrons are treated as a fluid so that their motion is assumed to be described by 

the electron momentum equation 

n, m,(dv,/dt) = --en,(E + v, x B/c) - VP,, (3) 

where m, is the electron mass, n, the electron density, v, the electron drift velocity, 
and P, the scalar electron pressure. For low frequency modes, electron inertia effects 
are not important. Therefore, the left-hand side of Eq. (3) is set equal to zero. With 
the electron current expressed as J, = -env, and the assumption of quasineutrality, 
Eqs. (2) and (3) may be combined to produce an expression for the electric field 

E = ( 1/4xni e)(V X B) X B - (l/n, ec) Ji X B - (l/n, e) V(n, T,), (4) 

where T, is the electron temperature. Equation (4) determines the electric field as a 
function of the magnetic field, electron temperature, ion current, and ion density. Ion 
currents and densities are determined by linear weighting (particle-in-cell). The 
magnetic field is advanced by Faraday’s law 

aBlat = -cV x E, (5) 
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and the ion particle positions and velocities are determined by integrating the 
equations of motion 

dv/dt = (q/mi)(E + v X B/C), @a) 

dx/dt = v. (6b) 

Although in this work we are interested primarily in phenomena not requiring 
dissipation, the algorithm may also be applied to dissipative modes, such as tearing 
modes, by the addition of a resistive term to the right-hand side of Eq. (3). 

A two-dimensional simulation code has been developed using this model. The 
equations are solved in Cartesian coordinates with no variation in the z-direction (i.e., 
a/az = 0). The magnetic field is B = B,z^ and the quantities J,, E,, and u, are all set 
equal to zero. Particle motion is followed by a standard leapfrog integrator. The time 
advance of field quantities given by Eqs. (4) and (5) is accomplished by a predictor- 
corrector algorithm. This algorithm, as follows, is similar in form to one used in one- 
dimensional computations by Byers et al. [2]. If the quantities Jr+]‘*, v~“‘*, nF’*‘*, 
B”, and E” are known, the magnetic field is advanced by 

B”+ 1’2 = B” - (c At/2) V x E”. 

A prediction is then made for E”+’ and B”+’ by 

E ;:,A = -E” + 2E(J,, ni, B, I’,)” + “*, Vb) 

B n+l_ 
pred - B”+“* - (cAt/2) V x E;;;. (7c) 

Using the predicted fields, a predictor particle move is performed to obtain n$$ 
and Jn+3/2 after which Bnt3/* i,pred pred is predicted by 

B ll+3/*=Bn+l 
pred pred - (Cd@) v x E;:,:. Ud) 

Finally, the new electric and magnetic fields are obtained from 

E”+ 1 = ~E(J,, ni, B, P,)“+ 1’2 + ~E(J~, n,, B, p,);p, (74 

B ntl_ -B r~+*‘* - (cdt/2)V x En+‘. Vf) 

The particle positions can now be advanced to n + 3/2 using these new field quan- 
tities. The electric and magnetic fields are stored on interlaced grids. Spatial 
derivatives are determined by four-point operators, e.g., 

(=x/ax) i+l/*,jt1/2= [(E.x)itl,jt~ + tEx)itl,j- (E.x)i,jt~ - (Ex)i,jIPX* (8) 

The algorithm is second-order accurate in time and space. The corrector iteration is 
necessary to prevent the appearance of large amplitude odd-even oscillations. The 
time step is limited by a Courant-Friedrichs-Lewy (CFL) condition on the Alfven 
speed, At < (Ax/u,), where u,, s B,c/(4nnimi) ‘I* An additional constraint on the . 
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time step for stability is oci At < 2; however, in practice the CFL condition is the 
more restrictive requirement. The algorithm of Eqs. (7) has been successfully applied 
in a code using doubly periodic boundaries to study kink instabilities in field-reversed 
ion layers; these results are discussed elsewhere [4]. 

III. PLASMA-VACUUM INTERFACES 

The preceding algorithm has the disadvantage that it cannot treat properly low 
density or vacuum regions, where n, --f 0. We desire to avoid the details of sheath 
regions or describing low density plasma regions with high accuracy, since the 
quasineutral hybrid model is not well suited for such problems. However, we would 
like to include the gross effects due to the fields extending into vacuum regions, such 
as wall stabilization. Additionally, in highly nonlinear problems, density fluctuations 
may occur which cause low density or vacuum (ni -+ 0) regions to arise in a small 
number of isolated cells. These will cause local violations of the CFL condition 
which are sufficient to terminate the simulation unless an alternate method can be 
found for determining the field quantities in these cells. One possible solution is the 
addition of a low density plasma throughout the vacuum region which maintains 
sufficient plasma density so that the CFL condition is satisfied. This method, 
however, does not produce the instantaneous signal propagation that should occur 
across a vacuum. Additionally, for a highly nonlinear problem, large amplitude 
waves are likely to occur in the low density region which can still cause the CFL 
condition to be violated. 

It is desirable to use a method to treat vacuum regions that does not involve the 
monitoring of complicated, moving, plasma-vacuum interfaces. One such method is 
described by Hewett [3], where the resistivity is varied in moving from the plasma to 
the vacuum regions in a nonlinear AD1 solution. We have developed another way to 
include vacuum regions by modification of Eqs. (7b) and (7e) in the algorithm of 
Section II. Two constants, cP and cV, are defined so that in the vacuum cP = 0 and 
c, = 1, while in the plasma cP = 1 and c, = 0. Then Eq. (7b) is replaced by 

c,E;:,f, + c,V*E~~J=C,(-E" + 2E(Ji, ni, B,P,)"+1'2), Pa> 

and Eq. (7e) is replaced by 

cpE"+' + c, V’E”+’ 

= c~(~E(J~,~z~,B,P,)~+'/~ + ~E(J~,~~,B,P,)"+~'*). (9b) 

A grid point is defined to be plasma if n, > 12, and vacuum if n, < n,, where n, is a 
cutoff density, as illustrated in Fig. 1. The effect of the modification is that Eqs. (9a) 
and (9b) solve the plasma equations (Eqs. (7b) and (7e)) in the plasma and then 
solve V2E = 0, the vacuum electric field solution, in the vacuum. The magnetic field 
is still advanced by Eqs. (7a), (7c), (7d), and (7f). These equations provide values for 
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FIG. 1. A schematic of the grid used in the two-region solution. The shaded area corresponds to the 
plasma region, n, > nC, and the unshaded region to the vacuum, n, ( n,. In order to calculate the field 
quantities at a given point, the operator to be applied is determined automatically by whether that grid 
point is in the vacuum (u) or in the plasma region (p). 

B, in the plasma, in the vacuum, and at the conducting wall. The vacuum field is then 
smoothed by solving V*B, = 0 in the vacuum with the known values of B, in the 
plasma and along the conducting wall as boundary conditions. The left-hand side of 
Eq. (9) is constantly changing as the plasma moves; however, it is solved easily by 
an iterative matrix solver. Note that no monitoring of the plasma-vacuum interface is 
required. The CFL constraint is now a condition on the Alfven speed at the density 
cutoff, n,. For the magnetic field, this algorithm effectively solves V*A = 0 in the 
vacuum. This method adequately treats fluctuations in low density plasma regions 
and is capable of handling highly dynamical problems, as well. For the study of 
slowly evolving plasma behavior, however, such as theta pinch rotational instabilities 
with growth rates much less than the ion cyclotron frequency, additional care must be 
taken. 

In our two-dimensional model, the theta pinch equilibrium is a cylindrical plasma 
with an azimuthal current density J = Jo(r) 8. The initial plasma density is finite at 
radii r < I,, . A vacuum region extends from r = rP to a conducting wall at r = rW . An 
axisymmetric theta pinch equilibrium must satisfy the radial force balance equation 

where Qi is the mean ion rotational frequency. Near rP, the first term on the right- 
hand side of Eq. (IO), the magnetic force term, represents the inward force due to 
magnetic pressure. The other two terms, the thermal pressure term and the centrifugal 
force term, are both outward near r,,. An equilibrium may easily be set up which 
obeys Eq. (10) over the bulk of the plasma. Near the plasma-vacuum interface, 
however, the algorithm of Eqs. (7) and (9) produces diffusion. The reason for this 
diffusion is that in a region with plasma density below the cutoff density ncr the 
magnetic field is constant, because this region is considered to be vacuum and 
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V*A = 0 is effectively solved there (rather than V*A = 47rJ/c). Since the current is set 
to zero where 12, > ni > 0, the magnetic force term in this region is also zero. Conse- 
quently, the plasma near the interface will diffuse radially because it only sees the 
outward forces due to the plasma pressure and the centrifugal force of the rotating 
ions. The error here corresponds to the neglect of the small amount of current density 
(both ion and electron) carried by the low density plasma, which in the laboratory 
provides the J x B force that contains the plasma at its edge. 

An alternate method for treating plasma-vacuum interfaces has been devised for 
our two-dimensional simulation code. The plasma is now considered to be in three 
regions, rather than two. The regions are shown schematically in Fig. 2. The plasma 
region R, is still defined to be that with density above n,. The vacuum region R, is 
defined to be that with zero density, or n, < n,, where n, is a cutoff value smaller 
than n,. The transition region R, is the region with n, < n, < II,. The electric field is 
solved as described by Eq. (9). The transition region connects the vacuum magnetic 
field solution with the plasma solution by solving V*B, = 0 in R, with Dirichlet boun- 
daries determined by known plasma and vacuum magnetic fields. For this two- 
dimensional configuration, the magnetic field at a given time will be uniform 
throughout the vacuum. Because the simulation region R = R, + R, + R, is assumed 
to be bounded by a perfectly conducting wall, magnetic flux in the system must be 
conserved. Therefore, the vacuum magnetic field may be determined by 

B,(t= 0) d4 -J’ B,(t)dA -1 (11) 
RP Rt 

where A,,, is the area of the vacuum region. Generally, the transition magnetic fields 
are not known until after Blnc has been computed. Therefore, Eq. (11) is solved 
iteratively by assuming the transition region to be a vacuum in order to obtain an 

vacuum 

transition 

(zj 

plasma 

FIG. 2. The three regions for the plasma-vacuum system used in the theta pinch rotational 
instability problem. 
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initial estimate for BIac at a time step. Then V’B, = 0 is solved in the transition 
region and this solution is substituted back into Eq. (11) to get an improved estimate 
for B;“‘. This procedure is repeated until total flux conservation is satisfied within a 
specified convergence criterion. 

The effect of this solution on the equilibrium is that the magnetic field now 
corresponds to that which would be present if the missing current below the cutoff 
existed in he transition region. If a/at9 = 0, this current in the transition region is 
distributed so that the transition azimuthal current density is proportional to l/r, 
since V2B I = 0 is solved in that region. The transition region is typically only one or 
two grid cells in thickness; however, maintaining a finite l?B,/i?r there is critical, as 
our results demonstrate. Additionally, the small size of the transition region makes 
the time required for the vacuum and transition magnetic field calculation negligible. 
Sometimes small internal vacuum regions may occur due to fluctuations which arise 
in the nonlinear stage of a rotational instability. It is possible to search for such small 
regions and to handle them as transition cells by solving V2B, = 0. The method does 
not yet appear to be easily applicable to complicated plasma-vacuum interfaces in 
which large internal vacuum regions exist. 

IV. APPLICATION TO THETA PINCH ROTATIONAL INSTABILITIES 

We have studied rotating theta pinches starting from exponential rigid rotor Vlasov 
equilibria [5]. With 0, defined as the mean rotational frequency of the electrons, the 
current density as a function of radius is described by 

Jo(r) = -en,r(J2, - Qi) sech2((r2 f rf)/ri), 

and the corresponding magnetic field profile is 

(12) 

B,(r) = cmiQf/e(Q, - ai) + (~(7’~ + Ti)/e(J2, - 0,) t$) tanh((r2 f r:)/ri). (13) 

The sign preceding r: in Eqs. (12) and (13) is positive for nonreversed equilibria (i.e., 
when B,(O) > 0). For 0, = 0 or ri sufficiently large, a negative sign preceding r: 
corresponds to a field-reversed equilibrium (i.e., B,(O) < 0). A parameter a is defined 
such that a = -ai/@, - Bi). The case a = 0 corresponds to a stationary thermal 
(Maxwellian) ion distribution with all of the current carried by the electrons. This 
configuration should be stable, according to finite Larmor radius fluid theory [6] and 
Vlasov-fluid theory [7]. We now demonstrate the difference between the two-region 
and three-region solutions. Simulations have been performed with a density cutoff n, 
at three percent of the peak density. The spatial grid is a 100 by 100 mesh. Fifty 
thousand particles are used to represent the ions and the time step is oCi At = 0.1. 
Figure 3 shows the evolution of the radial density profile (averaged over 0) with time 
for the two-region solution. The plasma diffusion at the edge eventually leads to the 
diffusion of the bulk of the plasma, demonstrating that with the two-region solution it 
is impossible to maintain an equilibrium for times that are long compared to the ion- 



C)UASINIiUIKAL HYk4KIlJ YIMULAIIUN 459 

0.0 

n/n, 

0.6 

0.0 I .o 2.0 3.0 4.0 5.0 6.0 
r/r, 

FIG. 3. Theta pinch density profiles, n,(r), at t = 0, 6, 12, and 18~~;’ for the two-region solution, 
showing the radial diffusion of the supposedly stable plasma due to the lack of current and the resulting 
J X B force at the plasma boundary, a numerical defect. 

cyclotron period. In contrast, the result for the three-region solution is shown in 
Fig. 4. The diffusion at the edge has been virtually eliminated and the equilibrium 
density profile is maintained. It was found possible to reduce the plasma expansion in 
the two-region solution by using a lower cutoff density; however, since the time step 
is limited by the CFL condition on the cutoff density, unacceptably small time steps, 
from an economics standpoint, were required to eliminate the expansion effectively. It 
may be possible to use a more implicit method, for which the time step is not 
restricted by the CFL condition at the cutoff density, in order to improve the results 
of the two-region solution. 

FIG. 4. Theta pinch density profiles, n,(r), at I = 0 (-) and t = 18~0~;’ (---) for the three-region 
solution. The diffusion present in the two-region solution has been eliminated and the density profile of 
the stable plasma is correctly maintained. 
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FIG. 5. Initial particle positions for a rigid rotor theta pinch equilibrium. 

We have done simulations starting from nonreversed rigid rotor theta pinch 
equilibria with a > 0. These simulations have (a, - Qi)/O,i = 0.022 and p,, = 0.75. 
Here & is the beta-on-axis, /3, = ~(0) T/(B@r), where n,(O) is the initial density at 
r = 0 and B, is the magnitude of the external magnetic field. No instabilities have 
been observed for nonreversed equilibria with a = 1.0. For a = 2.0, however, an 
m = 2 instability, where m is the azimuthal mode number, is evident. These obser- 
vations are in agreement with the theoretical predictions of Freidberg and Pearlstein 
[6] and Seyler [7]. Figure 5 shows the initial ion particle positions for an equilibrium 
with a = 2.0. Seyler [ 71 predicts the growth rate for this equilibrium to be 
(y/wCi) = 0.025 and the real frequency to be (WdOEi) = 0.033. The two-region 
solution is not feasible for this problem because the plasma expansion would obscure 
the instability on these time scales. Therefore, the three-region method is used. In our 
simulation, at t = 1440,‘, an m = 2 instability has grown to large amplitude, as can 
be seen from the ion particle positions shown in Fig. 6. 

6 
t 

-2 

-4 I 
-61 ., ,, ,_, ,. 

-6 -4 -2 0 2 4 6 
x/r, 

FIG. 6. Theta pinch particle positions at t = 144w;‘, after an m = 2 instability has grown to large 
amplitude. 
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FIG. 7. Values of (l%(r))’ for the m = 2 mode (-) and the growth rate predicted by Seyler 
(y/u+ = 0.025) (---). 

The quantity Br(t, 19) G (r) - (r(t = 0)) is stored as a diagnostic and decomposed 
into its azimuthal Fourier components. In Fig. 7 is plotted (6r)’ for mode 2, which 
gives an approximate measure of instability growth. The broken line in Fig. 7 
corresponds to (&)* for the growth rate of Seyler [7] and shows that the growth we 
observe in our simulation is comparable. We have estimated the real part of the 
frequency CL), by measuring the rotation of the elliptically deformed plasma cross 
section. For this simulation run, we find (oJco,~) = 0.035 f 0.005. The value deter- 
mined by Seyler [7], (od~,~) = 0.033, is within the range of error of our simulation 
estimate. 

Although we are studying cylindrical problems with this code, we have observed 
no spurious numerical effects due to the Cartesian mesh. 

V. SUMMARY 

A two-dimensional predictor-corrector method for quasineutral plasma simulation, 
similar to that used in one-dimensional computations by Byers er al. [2], has been 
developed. The method has been extended to allow the inclusion of vacuum and low 
density regions. A simple, two-region treatment of the plasma-vacuum interface has 
been found inadequate for the study of instabilities with growth rates much smaller 
than the ion-cyclotron frequency. For such problems, we have implemented a three- 
region method of solution which avoids the problems of diffusion at the interface 
found in the two-region method and avoids time step restrictions associated with 
following the details of the sheath. The simulation model has been successfully 
applied to the study of ion layer kink instabilities [4] and theta pinch rotational 
instabilities. 
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